2B.A – Observing & Reporting

This material is based upon work supported by the NSF under Grant Nos. 1212159 and 1413072.

RESEARCH AND EDUCATION
COLLABORATIVE OCCULTATION NETWORK

Flow of a Campaign

- Event signup
- Practice
- Event
- Report
- Data Transfer

Event signup

- Current system uses either OccultWatcher or a survey form John has provided
 - Important so that we know the message got out to everyone and provides early warning in case of a serious scheduling conflict
- New system will be a consistent form for all events that will automatically post to the project database at SwRI.
 - Will allow for automated email followup, first to the team lead, then to project

Practice

- On some night before the event night:
 - Charge laptop and battery pack
 - Get a copy of the event planning page
 - Hard copy or use a smart phone
 - Setup system as if for event
 - Find target field and identify target star
 - (Optional) Save short video of field to share

Event

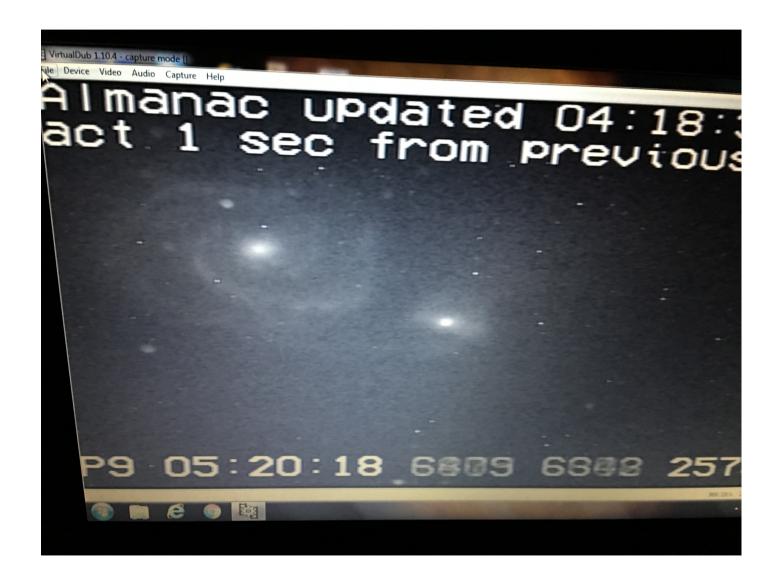
- Charge laptop (day of event)
- Charge battery pack (could take several days)
- Copy of planning charts
- Start setting up ~1 hour before event
- Find field
- Take data
- Stow equipment

- Tripod
 - Full spread on legs
 - Snug tight for spreader against legs
 - Level
 - Move it around on the ground to find a level setup without the need to adjust the legs
 - Adjust legs as need if prior step doesn't work

- Tripod
- Mount telescope
 - Telescope on tripod
 - Don't mount anything else yet, just put the battery pack under the tripod

- IOTA box power up (look for indicator lights)
- Telescope setup
 - Mount Telrad
 - Mount and plug in hand-paddle
 - Take off cover (don't put it in the big case)
 - Install diagonal on back of tube
 - Install camera in diagonal
 - Connect power
 - Turn on the telescope

- IOTA box power up (look for indicator lights)
- Telescope setup
- Run power/video cable from camera to IOTA-VTI and spare power lead, check to make sure camera power light is on
- Turn on laptop, wait for boot-up to complete
- Plug in USB/video adapter (with RCA cable)
- Start VirtualDub



- Plug in USB/video adapter (with RCA cable)
- Start VirtualDub enable video capture display
 - Verify camera signal and IOTA signal getting through
 - P for "preview" if screen comes up green
 - Look for almanac update message
 - Clear message by switch from Time to position and back to Time.
 - This step is important! The time will be off by 1 second in 2016 but will be 2 seconds after Jan. 1, 2017 until the almanac is updated. This behavior depends on the version of IOTA-VTI.

Almanac message

- Plug in USB/video adapter (with RCA cable)
- Start VirtualDub enable video capture display
 - Verify camera signal and IOTA signal getting through
 - P for "preview" if screen comes up green
 - Look for almanac update message
 - Clear message by switch from Time to position and back to Time.
 - This step is important! The time will be off by 1 second in 2016 but will be 2 seconds after Jan. 1, 2017 until the almanac is updated. This behavior depends on the version of IOTA-VTI.
 - Create data directory and set file name for event
 - Record time/position video (10-15 seconds)

Directories and Files

- All data in your "Data" folder
- Each night of observing, use a different folder
 - YYYYMMDD UT date of observations
- The first file name should following the pattern
 - YYYYMMDD 01.avi
 - You don't type in .avi, use the same date as the directory
 - First file will be _01, second _02, ...
 - VirtualDub will automatically adjust and the top of the window will tell you what file name it will use

- Plug in USB/video adapter (with RCA cable)
- Start VirtualDub enable video capture display
- Align telescope
 - Remember, there are different types of alignment methods
 - If the same thing is failing over and over again, try something else
 - Solar system (or 1-star) alignment can work surprisingly well when using Precise GoTo

- Plug in USB/video adapter (with RCA cable)
- Start VirtualDub enable video capture display
- Align telescope
- Focus telescope
 - Use the mask on a bright star and don't forget to remove the mask when done
 - Sometimes (if you are patient) focusing to bring out faint stars works better than the mask but this can be really tough to do when working at SENSEUP=128x
 - Good focus is extremely important for data quality

- Plug in USB/video adapter (with RCA cable)
- Start VirtualDub enable video capture display
- Align telescope
- Focus telescope
- Set the camera to the senseup setting for the event (this gives it time to settle down)
- Setup complete! Ready to move on

Event — Find the Field

- Make sure to use "of date" coordinates for the RECON telescopes.
- GoTo RA/Dec
 - Requires the use of the star training sets
 - Telescope behavior will be different every night
- Precise GoTo can work without training
 - Very effective, even with poor alignments provided you can see the helper star in the Telrad
- Remember, you may have to rotate the finder chart to get it to match the display on the laptop

Record Data

- Start recording data at appointed time
 - Many ways to start saving video, make sure to verify that you are indeed taking data by looking at the status screen on the right hand side
 - During recording, don't adjust position unless necessary. Use slowest hand-paddle speed that works, avoiding large jumps and smeared images.
- Stop data (Esc) at appointed time

Calibration Data

- Once event data are completed, collect the calibration data
- Turn off telescope drive (stops tracking the sky and stars look trailed) and take 2 minutes of video
- Put telescope cover on to block light from the sky and take 2 minutes of video

Stow the gear for next time

- Tear down the system and stow.
 - You are packing for the next event.
 - If the conditions are wet, it is valuable to stow them inside with the lids and covers open to let everything dry out. Close things up the next day.
 - The computer is last to be packed since you need to transfer data before final stowage

Report what happened

- Transfer your notes to the data directory
 - YYYYMMDD_log.txt or scanned logsheet
 - Include who was in attendance and who did what
 - Include description of weather conditions
 - Include list of files collected and what's in them
 - Include any other descriptions of the team efforts desired, the good, the bad, the ugly...
 - All of this is written to communicate to some unknown scientist 10 years (or more) from now to let them know what these files represent

Report what happened

- Transfer your notes to the data directory
- Fill in online report for your site
 - http://spikard.boulder.swri.edu/recon/report.php
 - You have 7 days to file this report but it's best to do this quickly so everyone can see how the event went

Transfer the data

- Connect the laptop to the internet
- Start the data transfer tool (cwrsync), depending on connection speed this will take a while and may need to be restarted many times
- Keep trying to run the tool until it no longer transmits any data and there are no errors

Most common failures in transferring data

- 1) Network interruption
 - a)Wireless connections periodically reset. Interval depends on things normally out of our control.
 - b)Wired connections can be more robust
- 2) Network restrictions (district or school firewall)
 - a) Cwrsync requires ssh (port 22) connection to spikard.boulder.swri.edu
- 3) Data are not in the right directory

Wiring Maintenance Kit

- Several sites have had wiring failures, most common to fail is the dual power/video cable
- We now have "kits" with all of the wiring (except for USB-video adapter) that we will mail out when there are problems
- These kits can be used to isolate the failing component
- Unused and bad parts are to be returned to SwRI

